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Abstract. Adam Smith is considered the father of modern economics. His re-
search on the Wealth of Nations[1] is the first scientific work that theorized about
the complexity of economic systems and how an ”invisible hand self-regulates mar-
kets and their behavior. In this way, we study the international commodity trade
markets as complex networks. We analyze their topological properties, structure
and temporal dynamics based on actual data. Our main premise states that a
close analogy can be found between trade networks in economics and mutualistic
networks in ecology. Indeed, both types of network are bipartite in nature and their
constituting agents are motivated by self-interest. Thus, we apply the method-
ology developed for mutualistic ecosystems to trade networks. Minor gaps can
be found in this methodology. We address such gaps by using well-known tech-
niques from related scientific work [2, 6, 8, 9, 10, 11, 12, 13, 14], which effectively
complement the premise. We confirm that mutualistic and trade networks share
similar topological properties and structure. In this way, the evidence supports the
fact that the premise is a realistic assumption.
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1. About market theory

Economists often take for granted the microeconomic theory and, in partic-
ular, market theory. Although Adam Smith and other authors have already
explained free market behavior more than two centuries ago, our understand-
ing of such behavior is still a high-level explanation. In the same way that
physicists understand the relationship between pressure and volume of an ideal
gas, economists underestimate the complexity of market structure on a low-
level perspective. In contract to physical phenomena, economic systems do
not always follow a set of well-defined laws. For instance, economic systems
tend to change their configuration and rules whenever a crisis appears. But
under certain conditions, like those we find in commodity markets, complex
network analysis may be of great help to provide new insights on economic
complexity and an opportunity to potentially expand market theory. After
all, the microeconomic theory does describe the basic markets in such a way
that network graphs may easily be used to depict them (Figure 1). Now, even
though this is not the first scientific work about trade networks, it is the first
one to propose a bipartite approach and the existence of a close analogy with
mutualistic systems.

2. Data analysis

We count on actual information about global commodity trading. This data
is based on the UN Comtrade database. It includes 5039 products and 297
countries from 1995 to 2009, accounting for 127 trillion dollars in trade volume
and 9×107 links in that period. It is also normalized due to reporting incon-
sistencies. We apply the key mutualistic indicators to the actual data. This
set of mutualistic indicators include: a) the degree distribution P (k), b) the
strength-degree correlation S(k), c) the nearest-neighbor degree distribution
Knn(k), d) the bipartite clustering distribution C4b(k), e) the average weight
as a function of the end-point degree 〈w〉(ki ∗ kj), and f) the weighted inter-
action nestedness estimator ηw. In addition, we create two scenarios based on
the RCA index, the revealed competitive advantage, which is defined by the
expression:

RCA =
x(c, i)/

∑
i x(c, i)∑

c x(c, i)/
∑

c,i x(c, i)
; (1)

where the term x(c, i) is the exported value for commodity c in country i.
The RCA serves as a link filter which enables us to separate the core from
the periphery of a trade network. Moreover, the number of links as a function
of the RCA shows a lognormal distribution. Based on our analysis, only 50
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Figure 1: Basic markets from a network point of view. Here, the monopoly, the
monopsony, the olygopoly and the perfect competition markets are described by
a network graph.

percent of the links remain active when setting a filter of RCA >= 10−3.
However, 99.5 percent of the trade volume is still active in the remaining
links. Finally, we also take advantage of the bipartite approach to visualize
the trade matrix on a logarithmic scale.

Since performing the experiment for all the products and each year is a
challenge given the large amount of data, we perform a selection process and
define a sample of 35 highly representative products. We then repeat the
experiment for each selected commodity, for each year, and for both scenarios.
Now, trade networks evolve over time, changing in number of links and in
trade volume, and reconfiguring its structure at the same time. We, however,
focus on the topological properties we previously described. These properties
are defined by the following expressions:

kimporters
i =

∑

i

aij (2)

simporters
i =

∑

i

aijwij (3)

Knnw,importers
i =

1
si

N∑

j=1

aijwijkj (4)

C4bimporters
i =

qi

Qi
=

qi

knn
i Ki(ki − 1)/2

(5)
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Figure 2: Trade network graph for computers in 2000. We observe that the
topology is highly dense in this case and no significant conclusions can be
inferred from it.

C4bw,importers
i =

∑
m,n qimn( w̃im+w̃in

2 )
knn

j Kj(kj − 1)/2
(6)

w̃jm =
wjm

w̄i
=

wjm
si
ki

(7)

All these indicators were defined for the importers. But given the bipartite
nature of this work, we apply an identical set of indicators to the exporters as
well.

3. Results

First of all, we process the network graphs for each selected commodity and
then we apply the RCA filter, repeating the procedure for each period. Figure
2 shows the trade network for computers in 2008 without the RCA filter. In
this case, we are unable to identify any community. Moreover, we are unable to
perform significantly relevant analysis either. Figure 3, in contrast, shows the
same trade network after the RCA filter is implemented, allowing us to extract
more information than that of the previous case. We find a high correlation
between the communities in trade networks and the geo-political reality as
well as the regional proximity. For instance, the Arabian countries are located
at the periphery of networks such as those of beer and other alcoholic bever-
ages, and having virtually no presence in these commodities, whereas they are
located at the core of the network in petroleum oil and its derivatives.

Secondly, we compute the basic topological properties, P (k) and S(k).
The results show a remarkable behavior in both cases (Figure 4). On one
hand, the degree distributions of both the importers and the exporters follow
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Figure 3: Trade network graph for computers in 2008. RCA filter has been
implemented here.

a power-law pattern. Unfortunately, we deal with the problem finite-size data
when computing the results at commodity level. The resulting exponents for
the importers (columns) and the exporters (rows) are not necessarily the same
and, in general, quite different. On the other hand, the strength-degree cor-
relation has a much cleaner pattern than that of P (k). The S(k) correlations
also follow a power-law form. The β exponents we obtain are higher than
one, providing evidence that, in trade networks, highly-connected nodes tend
to have higher trade volumes. In other words, the rich get richer. From a
dynamic perspective, we may argue that an exporter will have higher degree
whenever a competitive advantage exists. This advantage, in turn, will at-
tract new importers and more transactions from current importers, so that
the trade volume increases exponentially over time. This mechanism is likely
to explain the values of β > 1. It also means that importers of large quantities
of a given commodity tend to buy from several sources. Exporting countries
of large volume are very likely to be highly connected too.

Thirdly, after processing the performance of Knn(k), we find that trade
networks present an assortative behavior in general. However, a few specific
commodities do not. This makes sense from an economic thinking standpoint.
The profit maximization principle states that a firm or an individuo will act
in order to secure the highest possible benefit. This idea manifests itself when
realizing that highly connected countries tend to be associated to those that
are alike. It also shows that the main market force, competition, is always
present in the topology.

The previous analysis about Knn(k) is not complete though. We need
to account for the clustering coefficient behavior before drawing a definitive
conclusion. We use a bipartite clustering definition, as previously stated. This
implies that we look for closed loops of exporter-importer-exporter and vice
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Figure 4: P(k) and S(k) for computers in 2008. No RCA filter applied. In blue,
we show the performance of the importers. In green (on the bottom charts),
we find the results for the exporters. The dashed lines represent in all cases
the best-fit curves or power laws.

versa. But despite the technical definition, we focus on the exporting and
importing countries and their ability to form clusters as a function of the de-
gree. The evidence suggests that highly connected nodes are less likely to
form clusters. In contrast, less connected countries tend to form larger clus-
ters. The clustering distribution follows a power law with negative exponents.
Trade networks also show two clustering zones: an initial one with a low value
exponent and a final one with higher exponent. This, in combination with
the existence of assortative mixing, depicts an idea of bipartite trade networks
that follow every single principle in microeconomic theory; as such behavior
has a common root in self-interest, profit maximization and market bargaining
power. Less connected exporters will try to reach the importing ”hubs” so that
they have a higher share in the market, but the network topology (assortative
behavior plus negative clustering exponent) makes it intrinsically harder for
them to accomplish such objective, maintaining the status quo. The results
obtained for the average weight as a function of the end point degree is a mere
confirmation of the previously stated conclusion. This distribution also follow
a power law with positive θ exponents at all times.
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Figure 5: Knn(k) and C4b(k) for computers in 2008. The upper charts show
the properties for importers, showing an assortative behavior and a negative
bipartite clustering exponent. Exporter charts (bottom).

Finally, we compute the weighted interaction nestedness estimator and vi-
sualize the bipartite matrix as a supporting reference. The majority of results
for ηw are higher than 0.5, a fact that reinforces the similarities with mu-
tualistic systems. Some commodities show nestedness estimator values that
are close to that of a perfectly nested network (ηw = 1). In order to mini-
mize the problem of finite-size data, we also compute the degree distribution
for all products and all periods in the database. In this way, we find that
the distribution is better described by a truncated power law of the form
P (k) ∼ k−γe−k/kc. Indeed, a correlation with an R2 = 0.99992 shows again
that a very strong relationship with the mutualistic systems exist. This fact
will have a specific and important economic meaning in the conclusions.

4. Conclusions

So, in trade networks, like in mutualistic ones, the P(k) follows a truncated
power law. But, what does that really mean? In the introduction, we have
implied that the presence of a hub would indicate the existence of either a
monopoly or a monopsony. These are extreme cases and an idealization. But,
commodity trade markets are well known because they are very close to be a
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perfect competition market, where several buyers and sellers exist, and no one
has power over the market. A truncated power law supports this idea since
the distribution has a cut-off before an extremely connected node might ap-
pear. This is clear evidence about the way commodity markets are organized.
No hubs are created as either a consequence of the bargaining process or an
emergent phenomenon.

Regarding the bipartite approach, we proved that, like in mutualistic net-
works, a highly nested structure is present in trade networks. Such emergent
organization can be the results from no other source than a strong analogy and
the same basic rules that evolve in both systems. We will not argue about the
processes that lead to such behavior in this work. Instead, we propose an idea
of a common root cause that may partially explain this, at least. Self-interest
may well be that root cause. Ecologic systems are the result of evolution, a
purely cyclic process of natural selection. And species in these systems have
a main goal: the survival and growth of its own species. In this way, the mu-
tualistic strategies appear as a natural response to accomplish such objective.
As a consequence, mutualistic networks are highly stable and robust.

Commodity markets, on the other hand, evolve from a different premise
or goal, profit maximization, which is another form of self-interest. The eco-
nomic theory explains that profit maximization is essential to secure a business
survival and growth. Clearly, self-interest itself is the common element that
makes the analogy between mutualistic and trade networks fairly valid, in
addition to the topological evidence shown in the results section. This is an
opportunity for further research.

The adoption of two scenarios, with and without RCA filter, turned out to
be the right decision from a process point of view. We realized that the power
law exponents at the core of a trade network better reflects the topological
properties of the main countries and that the errors for those exponent are
lower, increasing the accuracy of the experiment.

We also analyze the dynamics of trade networks. We find similar results
and conclusions in comparison to previous related work in the field. Never-
theless, we feel that further analysis of the time series is required to either
confirm or reject the validity of our conclusions.
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Figure 6: Bipartite matrix visualization for computers in 2008. Exporters
are located on the Y-axis and importers on the X-axis. The matrix has been
ordered by increasing trade volume in a logarithmic scale.
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Figure 7: Degree distribution for all commodities from 1995 to 2009. We
show the actual results in green dots. The red line describes the best fit curve,
a truncated power law, with R2 = 0.99992
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